

PROBLEMCORNER

Solution to Problem 130

Let R = 1 mile

The area of a whole circle is π R² = $(2\pi R)(1/2 R) = 1/2 CR$, where C is the circumference of the circle.

The area of a sector is to the area of the entire circle as the arc of the sector is to the total circumference of the circle.

The arc of the sector is $S = R \phi$, where ϕ is in radians.

The area of the sector is $\frac{1}{2}$ S R = $\frac{1}{2}$ R² ϕ .

The area of the triangle under the segment is $\frac{1}{2}$ R² sin ϕ .

The area of $\frac{1}{2}$ the shaded lune is the area of the sector minus the area of the triangle, $\frac{1}{2}$ R² ϕ - $\frac{1}{2}$ R²sin ϕ = $\frac{1}{2}$ R²(ϕ - sin ϕ)

We want to know for what value of ϕ the area is equal to 1/3 πR^2 , so that $1/2R^2(\phi-\sin\phi)=1/3\pi R^2$, which reduces to $\phi-\sin\phi-2/3\pi=0$ This is not directly solvable, but by "trial and error", or iteration, For $\phi=2$, the equation yields -1.003692529 For $\phi=3$, the equations yields 0.76448489

By interpolation, ϕ of 2.567642431 yields -0.069706197

Further interpolation finally gives ϕ =2.605325696 or ϕ = 149°16′27″, from which R–X is 5280 cos 74°38′13.5″ or 1398.841′

The centers are then 2797.683' apart.

Solution to Problem 131

You can immediately place any number in its single digit column. When you examine the **1** column you'll notice that each number in that column, 10, 19, 28, and 37, adds to **1** when you add their digits until you get a single digit. For example 10's digits 1 and 0 add to **1**. The number 19's digits 1 and 9 add to 10, and those digits 1 and 0 add to **1**. The number 28's digits add to 10, and those digits add to **1**. The final single digit we call the SDQ or single digit quality. We write this mathematically as 10 = > 1, 19 = > 10 = > 1, 28 = > 10 = > 1, and 37 = > 10 = > 1.

86=>14=>**5**, and thus belongs in the single digit **5** column 175=>13=>**4**, and thus belongs in the single digit **4** column 4,688=>26=>**8** 53,493=>24=>**6** 106,441=>16=>**7** 7,121,368=>28=>10=>**1** 22,719,854=>38=>11=>**2** 958,877,535=>57=>12=>**3** 1,476,856,872=>54=>**9**